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OVERVIEW

Timeline Barriers
= Start: October 1, 2017 = Cell degradation during fast charge
» End: September 30, 2021 = L ow energy density and high cost of
= Percent Complete: 75% fast charge cells

Budget Partners

= Funding for FY20 — $5.6M = Argonne National Laboratory

Idaho National Laboratory

Lawrence Berkeley National Lab

National Renewable Energy Laboratory
SLAC National Accelerator Lab
Oak Ridge National Lab
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RELEVANCE

Impact:
Understanding the impact of new charge protocols

impacted by lack of clear methods and incomplete
information

Enhanced knowledge can be gained by aligning
key electrochemical data and physicochemical
models to understand role of new protocols

Developed framework can be readily transitioned
to other chemistries and cell designs

Objective

Aligning Models and Electrochemical Data to
Enhance Understanding and Advance New Charge
Protocols

Electrochemical

Data : =
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TASK MILESTONES

Metrics for comparing Dufek (INL) 12/31/19 Complete
protocols

Use existing models to Mai (NREL) 3/31/20 Complete
down select protocols

Create experimental Dufek (INL), Bloom (Argonne) 6/30/20 In process
matrix and initiate

characterization

Refine model based on Colclasure (NREL) 9/30/20 In process

experimental data

Use best case protocols in  Dufek (INL), Bloom (Argonne) 9/30/20 Planned
conjunction with improved

anode and electrolyte to

test CAMP pouch cells
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APPROACH

Understand the role of different charge protocols
— Develop methods for comparison
— Refine physicochemical models to evaluate new protocols
— Transition protocols from model to electrochemical validation
Identify key barriers as different charge conditions are used
— Develop coin and three-electrode cell methods

Transition lessons for full cell evaluation of updated cells near the end of
FY-2020
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COMPARING CHARGE PROTOCOLS

Round 2 Cells from CAMP

» Several protocols generate some positive results if just looking at capacity fade
* Need methods to more directly compare and contrast protocols
* Methods and metrics should expand scientific understanding of limitations
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PERFORMANCE METRICS FOR PROTOCOL

IDENTIFICATION

Round 2 cells nominally ~200 Wh/kg depending on cell size and
electrolyte content

6.8CCCV 6.8C MS2 9c cccv 9CMS2  6C CCCV (rd2) 9C MS5 (rd2) Ideal

% recharge in 10
—  min (based on C/2
8 discharge) 1.9 >1.9
chagernaung oy 165 NN I I I .
Delta T (C) — Full
cell & Model
@ (starting from 25C) NA NA NA NA NA NA
>, 125cycles 7 <7
O
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Technical Accomplishments and Progress
ADDITIONAL METRICS

dV/dt and Impedance Analysis
= Good indicator of mixed potential at the negative electrode

= As extent of Li plating increases becomes less distinct

= Need to directly follow on a cycle-by-cycle basis
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Technical Accomplishments and Progress
ADDITIONAL METRICS

End-of-charge Voltage

= Gradual decline indicative of normal aging (cathode loss, LLI etc.)
= Increase suggests mixed potential and increased Li plating

= Strong compliment of dV/dT and not limited to early cycling
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_ Colclasure, Smith, NREL
MODEL INVESTIGATION OF PROPOSED FAST

.CHARGING PROTOCOLS FOR ROUND 2 CELLS
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_— Electrochemical modeling provides an effective screening tool for
101 s oo investigating large protocol space to limit required costly experiments

() High frequency pulse

2 .. * Electrochemical model has been developed and validated with extensive
g e 2 testing with rates from C/20 to 9C and in custom 3-electrode setup/pouch
: .. cells
i | seo E » Goal: Maximize capacity while avoiding lithium plating
? ..~ + Often proposed protocols are ineffective because changes in current not
: 356 informed by potential for lithium plating
st — - H » Note, optimizing pulse charging requires accurate lithium stripping model
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MODEL INFORMED DESIGN OF CHARGING
PROTOCOL TO PREVENT LITHIUM PLATING
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‘—mln(phls phle)> 5mV ‘

Controlled multlstep:

——
L

200

400
Time (s)

« Li plates when the cell Is charged to high voltage at a

high rate

« Assume an internal sensor monitors min(phis-phie) or
potential for lithium plating

« Automatically steps down the charge current by 0.25C
when min(phis-phie) is smaller than a critical value (5

mV)

« Charge to 4.1V at high rate causes plating

* Cell can handle higher current during CV

NREL | 11



Technical Accomplishments and Progress Colclastre, Smith, NREL

NOVEL PROTOCOL 1: CC + VOLTAGE RAMPING
FOR ROUND 2 CELLS 02

4, 15-
aal Controlled mult Voltage profile with 41
S 4.05f “plating” sensor % .
g 39 ~0.27 mV/s _ Example voltage profile for & 3.9 -
a 3.5 ramp protocol =
T 3y 3 38 —0.1mV/s
3.75¢ g
3.7} [— min(phis-phie)>= 5mV |- Ramp protocol parameter 3.7 1 0.3 mVis
3658 200 200 sweep compared to 36 , .
Time (s) CCCV/CPCV 0 200 400 600
1 34.8 time (s)

» The controlled multistep protocol gives improved
performance but difficult to implement

Voltage is fairly linear after the initial CC charge
Performed large parameter sweeping:

F34.6

F34.4

F34.2

F34.0

Minimum phis-phie in 10 mins (mV)
Mean temperature (°C)
[ )

_ e o First CC in (5C tol10C, step=0.5C)
Eprci:fmem 336 o Transit to voltage ramping once min(phis-phie) <= 5mV
o viltsgamip L= o Voltage ramping rate in (0.1,0.4,step=0.025) mV/s

1.6 1.7 1.8 1.9 2.0

e Significant reduction of plating driving force
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Technical Accomplishments and Progress Colclastre, Smith, NREL

NOVEL PROTOCOL 2: MULTISTAGE CCCV FOR
ROUND 2 2 .,
0.25 Current for protocol  _ Voo — 10mV g
0.23 Controlled multistep with 2 CCCV steps E L Sl =l = s It [eyeapp—— . Y5 L
o T T [eoeeAnY compared to internal £ o . mE,'j"DL,q, O
< 017 | sensor S W WD 5 O
€ 015 - Ll Tt e “E*-L'IH'H“E- :E
g o8 Parameter sweep 5 _, « . 4
0.0 | Start 2nd . L for multi CCCV > % S cc:cvl i}fpr \erment 3
007 | ceoy Bt protocol £ 301 — cpey
0.05 T . [ multi-CCCV
0 200 400 600 —

-40 T T T T T T
) 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76
time (s) SOC after 10 mins charge

» Using multiple CC-CV steps with varying current and voltage cutoff can significantly improve charge
capacity

« Significant reduction of lithium plating

* Initial 7C charging results shown (3 parameter sweep)

» 10.5% improvement in predicted capacity with 7 individual CC-CV steps

* 6.6% improvement in predicted capacity with 2 individual CC-CV steps

. Somg current is removed from initial charging and more is applied in later stages
XCEL

Energy Efficiency &
Renewable Energy
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Colclasure, Smith, NREL

RAMP AND MULTI-CCCV SIGNIFICANTLY IMPROVE

Celll current (A)

PLATING FREE CAPACITY
Example Ramp Protocol
4.2 0.25
4.1 1

g 4. ——Cellvoltage [ 0.2
% Current
S 39 0.15
>
g ] [ 0.1
3.7 -
3.6 ' ' 0.05
0 200 400 600
time (s)

7C + 0.25 mV/s ramping
Capacity = 1.80 mAh/cm?
Min(@s- @) = ~3 mV

..............................................

Baseline 4.5 CCCV:

1.66 mAh/cm?
Min(@s- @) = 0 mV

E4>2<ample 2 stage CCC\[{3

Cell Voltage (V)

4.1

4

n___ e
- <
Cell voltage[ 0.2 E
Current 0.15 3
1 T
(@]

- 0.1
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time (s)

CCCV1: 8.5C 4.022Vv
CCCV2:3.5C 4.14V
Capacity = 1.77 mAh/cm?
Min(p.- ) = ~1.8 mV

To prevent lithium plating, the cell should not be exposed to high
= current and high voltage at the same time
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_ Colclasure, Smith, NREL
NOVEL PROTOCOLS ARE EFFECTIVE FOR

HIGHER ENERGY DENSITY CELLS

TD—SGC- = * T'u=55°c_ Hes
Parameter sweep s (I "
for ramp protocols ¢ TN g T .58 e
for EV type cell at : o B2 . .}
a.) 30 °C — f% | beds )] FTER T

imp I_180p 4, =
R A=l ) e
SOC after lOI(’nEILI'I)S charge S0C after 10 n('l;;s)c arge

« Higher loading cell: 4 mAh/cm? (110 micron electrodes; 230 Wh/kg with NMC 532)

* Improvement on no-plating capacity more significant for higher loading cell

* At 55°C, the no-plating capacity improved from 59% to 71%

» Improved charging protocol is roughly equivalent to raising initial charging temperature by ~10 °C

» Protocol eases requirements for elevated temperature or improvements to electrolyte/electrodes
For further details see: Ma/ Colclasure Sm/th “Model-instructed design of novel charging protocols

NREL | 15



COIN CELL METHODS
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ALIGNING CELL DESIGN

Determining methods to better align

coin and pouch cell data
= Charge coin cells to a scaled

capacity based on pouch cell charge

acceptance

— Let Vmax float based on higher

impedance

— Use to refine charge protocols for

evaluation in coin cells
— Compare over voltage

Dufek, Tanim, INL

Same trends, but
elevated
Comparing with anode
group on wetting and
formation
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Technical Accomplishments and Progress
ALIGNING CELL DESIGN

Time spent in CC

CC charge time to reach comparable capacity/ No Vmax for coin cell

= Close alignment in time during CC for
both at high rates

30

™ | Coin cell e Pouch Cell
25

= At lower rates longer time for coin cells

20

= Will be further refining based on
formation/wetting discussion and

15 4

CC charge time (min)

additional post cycling comparison :
= During Q3 will use modified protocols o o
for extended analysis of charge 1 2 3 4 s & 1 8 9

protocols

WCEL  eisisv| sz Dufek, Tanim, INL
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Technical Accomplishments and Progress
AFFECT CHANGES IN ELECTROLYTE

COMPOSITION?

= Three organic compounds were found in the HPLC

B formation + hppc m1-C m2-C m4-C m8C

0.40

0.35

0.30
‘é weight, Da formula wt, Da
£ 020 CiiHyOiPy  535.33
2015 CiH3g01sPs*  563.39

o CuOPF  317.20

0.05

0.00

535 563 317
m/e, Da

= No sensitivity to charge rate within experimental uncertainty
OKCEL ey e mgone . SLAC HNREL ool CINL Bloom, Argonne
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= XPS results show that Li
and LiF increase with
decreasing charging time

= The total amount of
carbon decreases with
decreasing charge time

Amount, at% or % of total

= Indicates that the surface
layer is getting thicker and
richer in LiF and other Li-
containing species

zzzzzzzzzzzzzzzzzzzz

CHANGES ON ANODE SURFACE WERE
SENSITIVE TO CHARGE TIME

60
50
40
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20
10

-10
-20
-30
-40

Chargingtime, h

Bloom, Argonne



THREE ELECTRODE
ANALYSIS
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_ Abraham, Argonne
3 ELECTRODE SETUP TO OPTIMIZE Colclasure, NREL

MODEL PROTOCOL DEVELOPMENT

= Cell resistance is dominated by NMC cathode

= EIS and 10 s pulse data indicate cathode resistance is dominated by film

resistance and not charge transfer reaction

Model with no cathode-film

: Model with cathode-film resistance
resistance and only Butler Volmer

and only Butler Volmer Reaction

Reaction
8
« Cell +« Cathode - Anode Cathode at 370C Cathode at 370C
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5 5 - 1C - “qc
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Technical Accomplishments and Progress
ANODE POTENTIALS VS. CELL VOLTAGE
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Limiting UCV to < 4.0 V reduces likelihood of Li-plating (early cycles)
Lithium plating condition (LPC) - Arrow moves to lower voltages as cell ages

OXCEL ey wniey Abraham, Argonne
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Technical Accomplishments and Progress
POSITIVE ELECTRODE - 30 °C DATA

MT63R, test 5b
- charge .
| = / ] —
a2 % : ——Pos
= 5 10 e
4.0 —~ i
:- E / & 5
: N
g s.s—f /
E C/5 0 T
© 3 — 0 5 10 15 20 25
: Z(Re), Q-cm?
3.6 .
discharge
at /5
30 °C ] Cell impedance is mainly from
3.4 T the positive electrode
0 20 40 60 80

High-frequency arc in EIS data
suggests that the electrode
impedance is mainly from the
oxide/carbon interface

specific capacity, mAh/g

Positive electrode polarization
Is responsible for most of the
cell voltage polarization
OKRCEL ey i Abraham, Argonne
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Technical Accomplishments and Progress
IMPEDANCE RISE TRENDS - EXAMPLE

3C 10s Discharge Pulse at 3.8 V
The impedance does not always show a steady rise; occasional drops and jumps

are seen, especially after the C/25 capacity measurement (every 20 cycles).
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Wider the SOC range, faster the rise
Higher the rate, faster the rise
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Technical Accomplishments and Progress
CAPACITY RETENTION TRENDS - EXAMPLE

C/25 discharge capacity
105 04CSOC30 X 4CS0C60 105 l 00.5C50C30 X 0.5CS0C60
100 l A4CSOC80 100 A 0.5C SOC80
0 &

= 95 - X [o) = 95 A [
< < Q
S 90 A X o S 90 8
5 o o 5 2
3 85 4 X @ 85 A A
= =
T 80 4 G BO 4
m m
o o
8 75 1 X 8 75 1
Ly Ly
™~ ™~
T 70 A bs) 70 4

65 65

A
60 T T T T T T T T T T 60 T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
Cycle Number Cycle Number

Effect of SOC range on cell capacity is more pronounced at
higher rates. Li-plating is more likely when both SOC range
and cycling rate are high.
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REMAINING CHALLENGES AND BARRIERS

= Transport is limited by cell design and materials — shifts in both can impact
ultimate optimized protocol

— Focus on tool development which can be broadly applied

= Refine understanding of electrolyte transport as anode task develops new
formulations and compounds

= Continued refinement of full aging analysis including more direct experimental
characterization for advanced protocols

= Understanding aging and implications of fast charge when not starting from 0%
SOC

s ouramnuensor | Enrgy Effciency &
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PROPOSED FUTURE RESEARCH

= Continue to expand fundamental understanding of charge protocols
— Pulsed methods, temperature dependence etc.

— Coordinate with anode and cathode tasks to understand variations produced by
change in materials

= Expand evaluation for new charge protocols
— Model developed systems
— Updated temperature, cell composition (based on cathode and anode tasks)

= Expand characterization and aging analysis through joint electrochemical, post-
test and modeling efforts

= Continued coordination with Grid & Infrastructure and Behind-the-Meter Storage
Projects

Any proposed future work is subject to change based on funding levels
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SUMMARY

= Established metrics for comparison of charge protocols
— Aligned with both ability to fast charge and impact to aging

= Refined physicochemical models to generate information on electrohcmeical
performance and heat generation

— Validated with existing data
— Used to identify new charge protocols for evaluation
— Evaluation in process

= Refined methods using coin and three-electrode cells

= Transport still a key limitation that needs to be addressed and refined as new
electrolytes and materials are introduced
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CRITICAL ASSUMPTIONS AND ISSUES

Major assumptions and issues listed earlier in the presentation
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EXPERIMENTAL INFORMATION

Test set up and design

= Low variability as received
— Round 1 - 1.9 mAh/cm?
— Round 2 - 3.0 mAh/cm?

Round 1

25 ©
T [ e S . . TSP . * 4
Ezo PS D . e e 3 * * * ry L AN * *
E20 ¢ Y PSS S Y VS A SR SN Aeed

A A
z- L
i 5T 22 mAh £ 0.48 mAh (2.5%) at €/20
& * C/20 A C/1 19 mAh £ 0.47 mAh (2.4%) at C/1- 12% cap reduction at C/1 = “ y ol
10 +— t t t + t t t t t t t t t + + t t t t t t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Polypropylene
Cell number
Round 2

40
S RS S S SP SSPUS SHSP S» SP—
<

E30 4 Ahk kA A Ak Ak kA A A A A A A A A A
225 F

® 20 ¢ 37.1 mah £0.35 mAh (1%)at ¢/20

5 15 _; ¢ C/20 A C/1 32.7 mAh £0.49 mAh (1.5%) at ¢/1- 12% cap reductionat C/1

10 E | Il I L | | I | | I | | Il I L | | I |

} } f t t t t } t t } } } f t t t }

t
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Cell number
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CURRENT PULSE EXPERIMENT = 3 ELECTRODE CELLS

CELL POSITIVE NEGATIVE
a 405 014 1c
3.95 // 8C . 8C 0.12
39 / K / ¢ o1
£ 338 FRED) £
%3.75 ?/ 33.85 — §0.06
37 £ B 0.04
3.65 S 38 002 8C
36 1C 3.75 1C 0
o 05 1 15 2 25 3 o o5 1 15 2 25 3 o o5 1 15 2 25 3
Capacity, mAh/g-oxide Capacity, mAh/g-oxide Capacity, mAh/g-oxide
10s charge and discharge pulses (1C — 8C)
applied at ~3.6 V (cell voltage), 30 °C
DECEL ey oz . Abraham - Argonne
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TWO TYPES OF TESTS — ROUND 2 ELECTRODES

4.6

iﬁz 10s charge and discharge
g ! pulses (1C — 8C) applied
iy at ~3.6 V and ~3.9 V.
S 34 Charge transfer during pulse

32 0.32 to 2.56 (~Liy o;) mAh/g

’ 0 5 10 15 20 25 30 35 40 45 50 55
Time, h

4.6
4.4
- 4.2
Capacity-limited charging 33:
to ~85 mAh/g (~Liyz) at  |= s
rates from C/5 — 6C. " 34
C/5 discharge to 3.0 V >

0 5 10 15 20 25 30 35 40 45

XCEL  eirey oo Time, h
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ACTIVATION ENERGIES FOUND FOR
ANODE CHARGE TRANSFER

= Charge transfer chemistry found to be 30 kJ/mol

= Parameters consistent with10-minute 6C protocol measured at
20-50 °C

= Updated model will be used to evaluate charge protocols

Anode Potential 45 °C

Anode 30 °C 016
0.16 ’
=014 e 30'14 - 1c
’;é 0.12 ~1c g0.12
= *3C = o + 3C
w 01 k B 0.
- . 5C = . 5C
S 0.08 S 0.08
2 . 7C 5 «7C
[-%
S 0.06 - & 0.06 —canr
0.04 ]
2 —3CM S 0.04 i it
< 0.02 S
. —5CM 0.02 .
0 —7cMm
0 pa—
0 0.05 0.1 0.15 0.2 1cM
. 0 0.05 0.1 0.15 0.2
Time (mins)

Time (mins)
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PULSE TEST - 30 °C & 45 °C ANODE POTENTIAL

3.57V
0.15 - o DU N ST BN FD v, BN - SO v S 0.15 - 3.57V
e P CETET T CEPEr I

. 0.10 e 0.10
= =
- -
=] [ N PTELTTY o CETTEY 1 PPEPE o7 PR V' o PPy PR i
E4 . g i
s s
£ £
5 0.05 £ 0.05
-9 -9
§ 10s charge pulse § 10s charge pulse
5 7 O before pulse 5 T O before pulse

& Ohmic & Ohmic

< end-of-pulse < end-of-pulse

000 4 —-——-—mrmm e D T 0.00 4 -—-——-—m o m s e +
- ° - o
30 °C 45 °C
T T T T T T T T T T T T T T T T T T
0 2 4 ] 8 0 2 4 ] 8
rate during the pulse, *C rate during the puise, *C

Li-plating condition (LPC) can be met during high-current pulses
- Depends on cell voltage; LPC met at ~3.9 V, but not at ~3.6 V
- Depends on length/duration of pulse (amount of charge moved)
- Depends on temperature; more likely at lower T’s.
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38




XCEL

EXPERIMENT

Round 2 NMC 532 // Graphite full (coin) cells with Gen2 electrolyte

Formation: 2 C/10 cycles, 1 C/25 cycle

Aging Unit - Repeated

4.2

Cell Voltage, V
w
(o)}

xC
charge to
set SOC

0 5 10 15 20 25 30
Time, h

ENERGY | renewable Energy

3C, 10s discharge & charge
pulses every 2 cycles
Cycles at varying charge
rates to various SOCs
Discharge to 3.0 V at C/5
until current < C/100

C/25 every 20 cycles to
check cell capacity

Repeat steps until stop
condition is reached

Cycling stopped when cell reached one of
the following conditions

ASI >= 40 ohm-cm?

Polarization during fast charge cycles >=
5V

Cycle count =100

Energy Efficiency &

8C 30 20 10
6C 40 30 20
4C 80 60 40 30
2C 100 80 60 30
1C 100 80 60 30
C/2 100 80 60 30
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